

Lexical and Phonological Frequency Effects in Developmental Dyslexia Evidence from Auditory MEG Data

Julia Schwarz & Anastasia Klimovich-Gray

University of Cambridge js2275@cam.ac.uk Basque Centre on Cognition, Brain and Language a.klimovich@bcbl.eu

I Introduction

- Most individuals with diagnosed dyslexia have a phonological processing deficit¹, which has led to the Phonological Representation Hypothesis of Dyslexia: Individuals with dyslexia have poorly specified phonological representations and/or difficulties in accessing these representations.²
- Assuming weaker phonological representations in

III Results				1. Single Regression of the Epoched Data ¹⁰									
(1) Phonological					al Neighbours			(2) Word Form Frequency					
	0.100 s	0.200 s	0.300 s	0.400 s	0.500 s	0.600 s	0.100 s	0.200 s	0.300 s	0.400 s	0.500 s	0.600 s	
Control													fT/cm
Dyslexia Diagnosis												7	- 3.0

2.&3. Correlation of Averaged ERRCs and Phonological Composite Score

(1) Phonological Neighbours x Phonological Score

Left Hemisphere

n.s.

Right Hemisphere

---- Control

- dyslexia, atypical neural encoding of phonological neighbourhood (NP) during auditory word access is expected. However, it is unclear how a deficit in learning phonological associations affects processing at the lexical level (word form frequency; WF).
- Research on NP and WF effects in dyslexia has concentrated on visual processing and found conflicting evidence, ranging from virtually no processing differences³ to differences in localization⁴, atypical word repetition effects⁵, and differences in evoked power.⁶
- The link between behavioural phonological deficits and the neural basis of phonological-lexical access in dyslexia remains unclear.

Research Question

Does the phonological deficit in dyslexia modulate how phonological-statistical information is encoded during auditory word access?

care

pear

→ Correlation between NP and Phonological Score in the left and right hemispheres 90-400ms post stimulus-onset

(2) Word Form Frequency x Phonological Score

t (ms)

At what level?

(1) at the *Phonological Level*:— Phonological Neighbours

(2) at the Whole Word Level:
Word Form Frequency

II Methods

Participants

17 without reading problems, 14 diagnosed with dyslexia, matched in age (12-44, *M*=26.1) and general IQ (*M*=119.5)

hair

Behavioural Tests of Phonological Skill

- (a) Phonological awareness test (PECO: N out of 40)
- (b) Nonword reading test (accuracy/time*100)
- → Combined into Phonological Composite Score: z(a) + z(b) / 2

Procedure

→ Correlation between WF and Phonological Score in the right hemisphere
 200-500ms post stimulus-onset, but only for subjects with diagnosed dyslexia

IV Discussion

(1) At the Phonological Level

- Better phonological skills are correlated with stronger encoding of phonological neighbourhood in the brain throughout the time course of word processing, especially in the left hemisphere.
- This correlation holds regardless of dyslexia diagnosis, but dyslexics tend to have lower phonological skills (lower Phonological Composite Score) and as such weaker encoding overall.

(2) At the Whole Word Level

Better phonological skills are associated with stronger encoding of word

- MEG recordings
- Participants listened to Spanish nouns (N=120)
- Occasional decision as to whether word was animate or inanimate

Analysis

- Single-subject regression of the epoched data (-100–700ms):
 (1) Phonological Neighbourhood (Phonological Level)
 (2) Written Word Form Frequency (Whole Word Level)
- 2. Averaging of Event-Related Regression Coefficients (ERRCs)⁷ within pre-defined time-windows (90-650ms)⁸
- 3. Correlation of ERRCs and **Phonological Composite Score**⁹

frequency in the right hemisphere in mid-late time-windows, but only for people with diagnosed dyslexia.

Stronger encoding of word form frequency in the right hemisphere could be a dyslexia-specific mechanism, compensating weaker phonological form encoding in the left hemisphere.¹¹

Phonological deficits are linked to weaker neural encoding of phonological information and compensatory encoding of word form frequency during auditory word access

→ in line with the Phonological Representation Hypothesis of Dyslexia.

Acknowledgements: Many thanks to Mikel Lizarazu and Nicola Molinaro for their help with this project. References: 1) Lyon et al., 2003; Shaywitz et al., 2006; Metsala, 1997; Vellutino, 2004; Boets et al., 2013; Ramus, 2014; Ramus & Szenkovits, 2008; Brady, 1997; Fowler, 1991; Hulme & Snowling, 1992; Wagner & Torgeson, 1987; 2) Swan & Goswami, 1997; Griffiths & Snowling, 2001; 3) Araújo, Huettig & Meyer, 2020; Rüsseler et al., 2003; 4) Heim et al., 2013; 5) Johannes et al., 1995; 6) Paul et al., 2006; 7) Hauk et al., 2006, 2009; 8) Dufour, Brunelliere & Frauenfelder, 2013; 9) Fdr correction applied; 10) Topomaps based on matched samples (14 subjects/group); 11) Klimovich-Gray et al. (in prep.)